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Cyclic behaviour over a range of timescales is a well-documented feature of many dome-forming volcanoes, but
has not previously been identified in high resolution seismic data from Volcán de Colima (Mexico). Using daily
seismic count datasets from Volcán de Colima and Soufrière Hills volcano (Montserrat), this study explores par-
allels in the long-term behaviour of seismicity at two long-lived systems. Datasets are examined using multiple
techniques, including Fast-Fourier Transform, Detrended Fluctuation Analysis and Probabilistic Distribution
Analysis, and the comparison of results from two systems reveals interesting parallels in sub-surface processes
operating at both systems. Patterns of seismicity at both systems reveal complex but broadly similar long-term
temporal patterns with cycles on the order of ~50- to ~200-days. These patterns are consistent with previously
published spectral analyses of SO2 flux time-series at Soufrière Hills volcano, and are attributed to variations in
themovement ofmagma in each system. Detrended Fluctuation Analysis determined that both volcanic systems
showed a systematic relationship between the number of seismic events and the relative ‘roughness’ of the time-
series, and explosions at Volcán de Colima showed a 1.5–2 year cycle; neither observation has a clear explanatory
mechanism. At VolcándeColima, analysis of repose intervals between seismic events shows long-termbehaviour
that responds to changes in activity at the system. Similar patterns for both volcanic systems suggest a common
process or processes driving the observed signal but it is not clear from these results alone what those processes
may be. Further attempts tomodel conduit processes at each volcanomust account for the similarities and differ-
ences in activity within each system. The identification of some commonalities in the patterns of behaviour dur-
ing long-lived dome-forming eruptions at andesitic volcanoes provides amotivation for investigating further use
of time-series analysis as a monitoring tool.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction

Many volcanoes form lava domes, which are characterised by the
slow extrusion of highly viscous magma that accumulates on or near
the vent and can form voluminous edifices. Dome growth eruptions
are generally relatively long-lived, lasting from months (e.g. Kelut,
Indonesia; De Bélizal et al., 2012) to centuries (e.g. Mount Merapi,
T, Fast Fourier Transform; LALP,
er method; PDA, Probabilistic
, Soufrière Hills volcano; STFT,

n and Ecological Sciences, Jane
, UK. Tel.: +44 151 794 5160.
, nick@ucol.mx (N.R. Varley),
earth.ox.ac.uk (D.M. Pyle),
iu).

. This is an open access article under
Indonesia; Siswowidjoyo et al., 1995), and often involve multiple col-
lapse and explosive episodes. The transition from effusive to explosive
activity of a dome may be rapid, presenting significant challenges for
forecasting and hazard mitigation (e.g. the 1990–1995 eruption of
Mount Unzen, Japan, Nakada et al., 1999; and the 2010 eruption of
Mount Merapi, Indonesia, Surono et al., 2012). To address this, investi-
gations using multi-parameter datasets and improved analytical tools
may provide insights into the processes governing these rapid changes
in volcano behaviour, and thereby help reduce the hazard posed by lava
dome eruptions.

Periodic behaviour is commonly observed in eruption-related seis-
micity, ground deformation and in rates of degassing from volcanic sys-
tems; it has been documented in several volcanic systems including
Santiaguito (Guatemala; Harris et al., 2003), Mt St Helens (USA;
Swanson and Holcomb, 1990), and Soufrière Hills volcano (Montserrat;
Voight et al., 1998; Loughlin et al., 2010; Wadge et al., 2010; Nicholson
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
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et al., 2013). Periodic behaviour can be relatively unstable, showing sys-
tematic or non-systematic temporal changes in nature as the eruption
progresses (Denlinger and Hoblitt, 1999). Technological advances
have permitted geophysical datasets to be studied at increasingly fine
resolution, while advances in analytical methods and modelling have
increased the sophistication of data interpretation (e.g. Odbert et al.,
2014). Nevertheless,much of the previouswork in this field has focused
on individual volcanic systems and little work has been done to com-
pare and contrast the geophysical and geochemical datasets from mul-
tiple well-monitored volcanoes (e.g. Varley et al., 2006; Watt et al.,
2007; Lachowycz et al., 2013). One consequence of this is that there
has been little translation of statistical techniques developed and
applied at one volcano to other systems and, despite considerable
endeavour, the potential use of time-series analysis and other statistical
approaches to volcano monitoring has not yet been fully realised (e.g.
Jaquet and Carniel, 2003; Jaquet et al., 2006).

At Soufrière Hills volcano, periodic variations have been observed in
multiple geophysical datasets and used to construct models of the
volcanic system (e.g. Voight et al., 1999; Costa et al., 2007b; Nicholson
et al., 2013). In contrast, relatively little attention has been paid to com-
parable behaviour in datasets from Volcán de Colima (e.g. Lachowycz
et al., 2013). Our study develops from that presented by Lachowycz
et al. (2013), who applied Detrended Fluctuation Analysis to datasets
from Volcán de Colima (2004–2009) and Soufrière Hills volcano
(1997–2010). Here, we apply multiple statistical tools to volcano-
seismic data from Volcán de Colima with the aim of identifying and
describing systematic time-series variations prior to and during the
2007–2011 lava-dome formation. We also report a similar analysis on
a volcano-seismic dataset from Phases 1, 2 and 3 (1996–2007) at
Soufrière Hills volcano, Montserrat, allowing a direct comparison be-
tween the two systems. By using three analytical tools (Fast Fourier
Transform, Detrended Fluctuation Analysis and Probabilistic Distribu-
tion Analysis) on two different volcanoes, this study will help attain a
greater understanding of processes occurring during dome-forming
eruptions and aims to identify what lessons learnt from the better stud-
ied Soufrière Hills volcano might be transferred to Volcán de Colima.

1.1. Field areas and Data

Volcanic activity is usually preceded and accompanied by seismicity,
as the rock beneath the volcano responds to intrusion and flow of
magma, and changes in stress (e.g. Sparks, 2003; Kilburn, 2012; Pyle
et al., 2013). Volcano-seismicity is one of the most useful and widely
monitored attributes of volcanoes and is well-established as a tool for
understanding volcanic processes (Neuberg, 2000; McNutt, 2005;
Chouet and Matoza, 2013). Seismic monitoring has yielded the most
complete and well-populated time-series available for the volcanoes
studied and is therefore the most appropriate dataset for the purpose
of examining temporal behaviour. We have restricted our work to
the analysis of data at a daily resolution for ease of processing, but
acknowledge that there is significant potential for the analysis of higher
temporal resolution data.

1.1.1. Volcán de Colima (VdC)
VdC is an andesitic stratovolcano located at the western end of the

Trans-Mexico Volcanic Belt, lying approximately 30 km NNE of the
city of Colima. Historical activity can be divided into ~100 year cycles
dominated by dome growth and lava flows, with pyroclastic flows
appearing shortly before the cycle endswith amajor explosive eruption
(e.g. 1818 and 1913; Luhr and Carmichael, 1980). Themost recent erup-
tive activity has been ongoing since 1998, comprising at least five lava
dome growth phases culminating in large Vulcanian explosions. Lava
extrusion rates varied from a peak of 6–8 m3 s−1 in 2004 (Varley
et al., 2010b) to 0.019m3 s−1 in 2010 (Mueller et al., 2013). Smaller Vul-
canian explosions and transient degassing events of variablemagnitude
and ash content also occurred at a rate of ~2–10 per day from March
2003 to July 2011 (Varley et al., 2010a,b; Lavallée et al., 2012). In July
2011 the volcano entered a quiescent period which ended in January
2013 with several large explosions heralding a new phase of activity.
Small daily explosions resumed thereafter and a new dome and lava
flow is ongoing as of June 2014.

During the recent eruptive activity there have been three dominant
groups of seismicity at VdC: long-period and those due to explosions
and rockfall. Explosion events are divided into impulsive and emergent
events, and long-period seismicity is separated into (relatively) large
long-period events, and short-duration, low-amplitude long-period
(LALP) events (for more details see Table A, Supplementary File 1).
We analyse both explosion and LALP events from January 2006 to July
2011 which includes the whole 2007–2011 dome-growth phase
(2038 days; Fig. 1A). Seismicity associated with explosions is thought
to be due to pressure release or pathway opening required for explosive
venting of ash and/or gas. The source of long-period events has previ-
ously been modelled as deriving from a pressure differential and fluid
movement (Chouet, 1996; Neuberg, 2000) but more recent work has
described the source as brittle failure of magma as it passes through
the glass transition, with resonance producing the low-frequency coda
(Neuberg et al., 2006; Harrington and Brodsky, 2007; Varley et al.,
2010a). The larger long-period events and rockfalls occur infrequently
and have a relatively high degree of uncertainty during classification,
thus precluding reliable time-series analysis. Events were manually
classified and counted by the Centre de Intercambio e Investigación en
Vulcanología (CIIV), Colima, by inspection of seismographs and spectro-
grams recorded by a short-period vertical seismometer (EZV4) located
1.7 km from the volcano's summit; the seismometer forms part of
the Colima Seismic Network (RESCO; Arámbula-Mendoza et al., 2011).
Constraints that arise from the network and its configuration are
discussed in Section 1.1.3.

Hutchison et al. (2013) subdivided the 2007–2011 dome growth
episode into three stages: the preliminary growth of a blocky lava
dome (stage I, February 2007 to December 2007), endogenous dome
growth with the formation of a large talus apron (stage II, January
2008 to February 2010), and the formation of a lava lobe and a change
to exogenous growth (stage III, February 2010 to July 2011). These divi-
sions are used here to relate changes in activity to any features that arise
from analysis of the seismic time-series.

1.1.2. Soufrière Hills volcano (SHV)
SHV is an andesitic stratovolcano in the southern part of Montserrat,

in the Lesser Antilles island arc. Activity since 1995 has been
characterised by five phases of lava dome growth, the first three of
which lasted 2–3 years separated by pauses of ~2 years. Active growth
is typically dominated by lava extrusion interrupted by periodic explo-
sive activity and domecollapses (Herd et al., 2005). Similar to VdC, there
was explosive activity between each phase of active dome growth
(Druitt et al., 2002;Norton et al., 2002),with occasional larger vulcanian
explosions sometimes associated with dome collapse (Linde et al.,
2010). Typical extrusion rates are higher at SHV, with a range of
0.2–5.6 m3 s−1 (Ryan et al., 2010; Wadge et al., 2010).

Explosive behaviour at SHV has often shown correlationwith cyclic-
ity in other parameters, improving the potential for forecasting during
periods of activity, and leading to a better understanding of ongoing
processes in the conduit (Pyle, 1998; Connor et al., 2003; Watt et al.,
2007). A series of Vulcanian explosions in 1997 coincided with tilt
cycle maxima and sub-daily seismic cycles (Voight et al., 1998). Studies
of ground deformation and volcano-seismicity at SHV have described
both sub-daily (3–30 h) and 6–8 week (‘50-day’) cycles (Voight et al.,
1998; Odbert andWadge, 2009; Loughlin et al., 2010). Cyclic behaviour
is widely considered to be the result of competing processes in the
system, with sub-daily behaviour explained by periodic stick–slip
magma plug motion, in response to shallow-conduit pressurisation
(e.g. Denlinger and Hoblitt, 1999; Melnik and Sparks, 2005; Costa
et al., 2013). For the longer ‘50-day cycle’, periodic expansion and



Fig. 1. Total daily counts for seismicity types analysed in this study from (A) Volcán de Colima (VdC) and (B) Soufrière Hills volcano (SHV); note the different y-axis scales. Classification of
stages for VdC dataset is based on Hutchison et al. (2013). Phases of active dome growth at SHV are derived from Wadge et al. (2010); note that Phase 1 began on November 15 1995,
before the start of the dataset.

108 O.D. Lamb et al. / Journal of Volcanology and Geothermal Research 284 (2014) 106–121
contraction of an elastic-walled dyke, which acts as a volumetric capac-
itor to magma storage in the lower conduit, has been invoked (Costa
et al., 2007a,b, 2013).

We analyse the daily counts of three observed volcano-seismic
event types (hybrid, long-period, and volcano-tectonic; see Table B,
Supplementary file 1) from October 1996 to December 2007
(4087 days; Fig. 1B). This period of analysis includes the three longest
phases of activity at SHV (Phases 1, 2 and 3). Phases 4 and 5 are not con-
sidered here as their durations are too short for the associated seismic ac-
tivity to be analysed robustly. Long-period and hybrid seismicity are
thought to be related to resonance in the conduit triggered by brittle fail-
ure of ascending magma (Neuberg et al., 2006; Harrington and Brodsky,
2007). Volcano-tectonic seismicity is interpreted as fractures in the coun-
try rock caused by the intrusion of magmas (Chouet et al., 1994; Lahr
et al., 1994). Rockfalls at SHV are not analysed here as it is not possible
to comparewith the poor rockfall record at VdC. Seismicity onMontserrat
is recorded by a network of seismometers, both broadband and short-
period, which transmit signals to the Montserrat Volcano Observatory
by spread-spectrum radio (Luckett et al., 2007). Classification, counting
and analysis of the seismic events are carried out daily by analysts at
the observatory using SEISAN software, which has the facility to record
signal subtypes (Luckett et al., 2007). Constraints that arise from the net-
work and its configuration are discussed in Section 1.1.3.

1.1.3. Network constraints
Each volcanic system is host to a seismometer network which is

used to constantly monitor activity as well as collect data for analysis.
However, both networks are imperfect with sources of bias and error
that merit discussion before analysing the datasets. Sources of bias
that are common to both networks include:

• Background noise— Changes or increases in background noise due to
weather/sea conditions can obscure smaller events, particularly
during severe weather.

• Teleseismic events— Large local tectonic events are already accounted
for in each network, but can still obscure a negligible number of small
volcanic seismic signals.

• Operator bias — Misclassification of events, or changing of criteria
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over time is something that is always present in manual classification
of signals. At SHV, the most common errors are that between some
hybrids and volcano-tectonic events, and hybrids and long-period
events. At VdC, the most common errors are between emergent and
impulsive events, and between true and false (i.e. short-lived noise)
low-amplitude, long-period events.

• High activity — During periods of high activity the seismic signals are
dominated by large numbers of rockfalls and/or pyroclastic flows
which can obscure the smaller signals of greater interest. Similarly,
the smaller signals can get swamped during a swarm of hybrid or
long-period seismicity.

There is also a bias that derives from the configuration of the
network, but they differ at each network:

• SHV— The network configuration onMontserrat (Luckett et al., 2008)
has not remained the same throughout the period of analysis and the
number of stations can affect the threshold used for automatic
detection of events. The number of stations tends to go down during
periods of high activity as stations are destroyed, or run out of
power due to ash on solar panels, and cannot be repaired due to safety
reasons. This kind of bias is inherent and is difficult to avoid as well as
quantify. However, the similarity in timescale of the results here and
with results from time-series analysis of other geophysical data
streams (e.g. SO2 flux; Nicholson et al., 2013) suggests this bias has a
negligible effect on the analysis of the dataset.

• VdC — Events at VdC have been manually classified from a single
short-period seismometer (EZV4) located 1.7 km from the active
vent. If data from this station was unavailable then data from another
short-period seismometer (EZV5), located 4 km from the vent, was
used instead. The greater distance from the vent meant that smaller
events, such as low-amplitude long period events, are more likely to
be missed due to attenuation or obscuration by background noise.
However, EZV4 was never unavailable for more than a week which
means a minimal number of events could have been missed.

In conclusion, the datasets used here are not totally consistent
records of the seismicity and results from their analysis must be
interpreted with a degree of caution. The biases that are present are in-
herent and are nearly all unavoidable. Errors in manual classification
can be minimized through training and strict criteria but the develop-
ment of accurate automatic classification could mean that manual
classification may not be relied upon in the future.

2. Methods

Time-series analysis offers a robust method of characterising long-
term behaviour within geophysical systems. This approach also offers
the potential for use in the long-term monitoring of restless or active
volcanoes, for example in the automated identification of ‘thresholds’,
or changes in the patterns of behaviour. Here three analytical tech-
niques are used: Fast-Fourier Transform analysis, Detrended Fluctuation
Analysis, and Probabilistic Distribution Analysis. Each method has been
successfully applied to volcanic datasets in previous work (e.g. Watt
et al., 2007; Odbert and Wadge, 2009; Lachowycz et al., 2013;
Nicholson et al., 2013) but this study is the first to use all three
approaches together to compare parallel volcanic systems.

2.1. Fast Fourier Transform (FFT)

Volcanic time-series are inherently non-linear and can show cyclic-
ity over a range of timescales. Superposition of multiple cycles within a
dataset can obscure the true signals. The Fast-Fourier Transform (FFT)
offers an efficient means of examining the characteristics of a time-
series (Danielson and Lanczos, 1942) via the Power Spectral Density
(PSD) estimate (Percival and Walden, 1993), which highlights the
power of periodic components in the signal. The PSD here is estimated
using the Multitaper Method (MTM), demonstrated to be the most ro-
bust method when there is no prior knowledge of the signal-
generating source (Thomson, 1982). The SSA-MTM Toolkit presented
by Ghil et al. (2002) was used to perform the spectral analyses here. A
detrending correction was used to prepare the data by rendering the
time-series approximately stationary, then either padded with zeroes
at either end or truncated to a length of n2 samples, for integer n, as re-
quired for FFT. The significance of spectral peakswere assessed against a
statistical red noise model (Mann and Lees, 1996), which is considered
the most applicable characterization of background noise within geo-
physical systems where processes act over timescales greater than the
selected sample length. It is impossible to fully characterise the nature
of the noise without prior knowledge of the generating source; there-
fore the red noise model acts only as a guide to interpretation. Here
peaks above the 95% confidence threshold are considered significant
for discussion.

MTM analysis requires statistical stationarity over the whole
data window, which is not a common feature of many geophysical
systems and can result in spectra which are difficult to interpret.
Short-term Fourier Transform analysis (STFT) calculates a series of
PSD estimates using a moving window of specified length with results
illustrated using spectrograms. An assumption of stationarity is only
required within an individual sample window, therefore spectrograms
are useful for tracking changes in the spectral content of a time-series
(Odbert and Wadge, 2009). These results can be directly compared
with other observations (e.g. magma effusion rate) during the time
period of analysis which can help constrain the process giving rise to
any cycles.

The choice of parameters (window length and window overlap) is
critical and has been optimised for each analysis depending on the time-
scales of interest. Awindow length of 256 dayswith 99% overlap provid-
ed the best compromise between achieving sufficient temporal
resolution and maintaining a long enough window for robust analysis.
The frequency distribution of each window was normalised to unity in
order to remove the influence of changes to absolute spectral power,
thereby allowing direct comparison of the relative frequency distribu-
tions between contiguous windows. This represents a similar approach
to that chosen by Nicholson et al. (2013) for datasets with a similar
timescale and temporal resolution. For each analysis, a high-pass
Butterworth filter (cut-off = 365 days; Butterworth, 1930) has been
applied to the time-series prior to the spectrogram calculation to en-
hance the clarity of the shorter period cycles of interest. Comparison be-
tween spectrograms generated from both raw and pre-filtered data
indicated that the use of a filter did not affect either the timing or the
frequency of resulting spectral peaks. However, thefilter cannot remove
the effects of long-periods of timewith little or no seismicity (e.g. March
1998 to November 1999 at SHV). Exclusive STFT analysis of October
1996 to March 1998 (thus excluding periods of low seismicity) at SHV
produced a similar result to that observed when the whole-time-
series (which includes periods of low seismicity) was analysed, indicat-
ing that periods of low seismicity do not distort results. These methods
have not previously been used atVdC but have been used extensively on
geophysical datasets from SHV. Odbert andWadge (2009) applied both
MTM and STFT analysis to tiltmeter deformation time-series and found
two cycles (9 h and 3 days), one of which was previously unknown.
Nicholson et al. (2013) identified and tracked temporal changes in
periodicity of SO2 degassing rates at SHV and demonstrated that the
strength of cyclicity (multi-year and ~50-day timescales) varied
systematically with respect to the style of eruptive activity.

2.2. Detrended fluctuation analysis (DFA)

DFAhas the potential to identify structure in the time-series that has
not been highlighted by FFT, enabling additional constraints to be
placed on the nature of sub-surface processes. DFA is used to quantify
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the nature of long-range correlations in non-stationary signals (Peng
et al., 1994). The resulting scaling exponent (α) quantifies the long-
range correlation properties of the time-series and can take values rang-
ing from 0 to ~1.5. Values in the range 0 b α b 0.5 signify alternating
large and small values are more likely (i.e. anti-persistence). If α ≅ 0.5,
each value is not correlated with any previous values (i.e. white
noise). 0.5 b α b 1 indicates long-range power-law correlation (i.e. per-
sistence), such that a value is more likely to be followed by similar
values. α ≅ 1 indicates strongly persistent, period-like (‘pink’) noise
and if α N1, strong correlations exist, but are not of a power-law form.
A value ofα ≅ 1.5 would result from ‘red’ (Brownian) noise, i.e. random
walk-like fluctuations in the signal through time. In simple terms, α
may be considered as a measure of the ‘roughness’ of a time-series:
the higher the scaling exponent, the ‘smoother’ the time-series (Peng
et al., 1994). A more detailed methodology, including an explanation
of how α is calculated, is presented in Lachowycz et al. (2013). Here
we investigate the temporal variation of α using a moving window
approach, following the method of Alvarez-Ramirez et al. (2009) and
Lachowycz et al. (2013). α is calculated for a subset of the data of a
specified length that is run incrementally through the time-series.

The parameters that must be considered are the moving window
size, the range of box sizes to calculate α and the moving increment.
One notable feature between different box sizes is a short-term cycle
superimposed onto long-term trends, with the cycle period scaling
with the maximum box size, indicating that a parameter artefact dis-
torts the results at short timescales. This artefact has been observed be-
fore and was explained by the influence of small variations in the
dataset and themoving increment; when there is insufficient variability
in the exponent time-series, a box/window-shift cycle effect is not
masked by the influence of new data included in the window as it is
moved (Lachowycz et al., 2013). Here, we find that long-term trends
on scales greater than the maximum box size are independent and
can be isolated by using a moving increment larger than the maximum
box size. Considering the disorder of the correlation above a box size of
100 days (log(n) = 2; see Section 3.2 and Fig. 2) and the artefact
discussed above, the parameters chosen for this analysis are a 180-day
moving window with a 45-day maximum box size and a 50-day
increment.

DFA has previously been successfully applied to datasets from
multiple volcanic systems. Analysis of the hourly time variation in
volcano-magnetic signals recorded at Mt. Etna (Italy) revealed two
Fig. 2. Log-logarithmic plots of fluctuation function against box-size resulting fromDetrended Fl
series. From SHV, (A) Hybrid, (B) Long-period, and (C) Volcano-tectonic events. From VdC, (D)
of the line calculated by least-squares regression, represented by the dashed red line.
distinct scaling regions aswell as cyclic variation onmultiple timescales
(Currenti et al., 2005). Alvarez-Ramirez et al. (2009) used DFA to quan-
tify correlations in an explosion time-series from Popocatépetl volcano
(Mexico) with results showing two quasi-periodic cycles (0.22 and
1.2 year) which they linked to volcano-tectonic events. As mentioned
before, Lachowycz et al. (2013) tested the technique on seismic data
(real-time seismic amplitude/energy measurements and event counts)
from VdC (2004–2008) and SHV (1996–2011).

2.3. Probabilistic distribution analysis (PDA)

As volcanic events can be treated as a stochastic time-series and
modelled by fitting statistical distributions, probabilistic estimates of
variables such as repose intervals can bemade. Herewe use theWeibull
model, which is commonly used in failure analysis, and the log-logistic
model, which is used to model systems involving multiple competing
processes. The cumulative distribution functions, F(x), for each model
are given below:

for : 0≤xb∞; aN0; bN0

Weibull : F xð Þ ¼ 1− exp − x=bð Þa� �

Log−logistic : F xð Þ ¼ 1= 1þ x=bð Þa� �
:

Parameters a and b are difficult to define physically; the shape
parameter, a, can be related the overall distribution shape, whereas b,
the scale parameter, can be thought of as an approximation to the
mean (Weibull) or median (log-logistic) of the system.

Previous work using this method has generally concentrated on the
analysis of time intervals between Vulcanian explosions. Connor et al.
(2003) found that inter-explosion timescales at SHV fit well with the
log-logistic distribution. However, Watt et al. (2007) found that while
the log-logistic model fits some explosion datasets, the Weibull model
provided a better fit to inter-explosion intervals from some other
volcanic systems, and suggested that rates of magma ascent and
pressurisation within the conduit may be the most important controls
in determining the distributions of repose intervals in Vulcanian sys-
tems. Varley et al. (2006) modelled repose intervals probabilistically
uctuation Analysis (DFA) of Soufrière Hills volcano (SHV) andVolcánde Colima (VdC) time
explosion time series, and (E) Low-amplitude Long-period (LALP) events.α is the gradient

image of Fig.�2
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using survival functions at four volcanic systems, including VdC. Their
results showed that activity can be divided temporally into different
phases which aided the construction of a model to explain variations
of eruptive activity.

Here we apply PDA to the repose intervals between discrete
seismic events at VdC, with each time-series divided into bins
with an equal number of events in each. The statistical distribution
parameters, a and b, were estimated for each bin by using both the
maximum likelihood method and probability plots (Fig. 3A, B).
Goodness of fit between the repose interval distribution and the
statistical distributions was found by calculating the Kolmogorov–
Smirnov P-values (range: 0–1; Massey, 1951) that give the probability
that the observed data were generated by a particular model. Here we
use the criterion that P N 0.8 to suggest that a model is a good descrip-
tion of the data. By tracing the variation in P-values for each model
over the time-series, temporal variation in the processes affecting the
seismicity can be described.

We applied this method only to the VdC dataset since the SHV
dataset did not include the repose periods between discrete seismic
events; it only included the day by day counts of each type of seismic
event at the volcanic system. Although it is possible to use calculated av-
erage repose intervals per day this can produce unreliable probability
curves (Watt et al., 2007). In the VdC dataset, the repose intervals for
Impulsive and Emergent events were not combined as for the purpose
of this particular method they are considered statistically independent
(Varley et al., 2006).
Fig. 3. Examples of probability graphs (A and B) used to estimate the parameters for the Weib
repose interval plot with the Weibull and log-logistic models plotted against it. All three graph
10 at Volcán de Colima.
3. Results

3.1. Fast Fourier Transform

3.1.1. Multi-taper method
MTM analysis was carried out on all complete seismic event count

time-series to provide a first-pass assessment of the cyclic character of
the dataset (Fig. 4; Tables 1a, 1b). Each PSD estimate reveals multiple
peaks of variable width and amplitude that appear significant above
the 95% noise confidence thresholds. Spectral peaks with periods of
23–28 and 41–47 days are common to all time-series. All time-series
also show variable numbers of peaks corresponding to 50–100 day
cycles. Cycles with periods N100-days are a feature of all datasets,
with the exception of the explosion time-series from VdC. Most of
these cycles are represented by the maxima of relatively broad peaks
in the PSD, which often indicate temporal variation in cycle frequency;
this implies that the cycles are either unstable or are a possible artefact
of the analysis.

Analyses of subsections of the complete time-series (Tables 1a, 1b;
Figures A, B, Supplementary file 2) are broadly consistent with the
results obtainedwhen thewhole time-series is considered. However, al-
though the dominant frequencies identified in the analysis of the com-
plete time-series (Fig. 4) are also evident on Figures A and B, the exact
frequencies and relative importance of cycles vary between successive
subsections (i.e. cyclic components are not persistent throughout the
time-series). The broad nature of the spectral peaks in the whole-
ull and log-logistic models. C is an example of a cumulative distribution plot showing the
s are calculated from repose intervals of Emergent events between 03/09/10 and 28/10/
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Fig. 4.MTM spectra showingwhole time-series power spectral density (PSD) of the daily event counts (1996–2007 and 2006–2011 at SHV and VdC, respectively) for (A) hybrid, (B) long-
period, (C) volcano-tectonic events from SHV, and (D) explosions and (E) LALP events during from VdC. PSD is plotted against various confidence levels of the Red Noise Model. Peaks
exceeding at least the 95% confidence level are annotated with the corresponding cycle period in days.
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time-series analysis is therefore a reflection of temporal instability in
cyclicity at VdC and SHV. Given that the two volcanic systems are
governed by complex interactions between multiple processes and
feedbacks operating on various timescales, this is not an unexpected
result.

These results show the cyclic behaviour at VdC occurs on a range of
timescales, and in a number of different seismic monitoring datasets
(Tables 1a, 1b). However, several observations, including broad spectral
peaks (Fig. 4) and inconsistency in absolute cycle length and/or domi-
nance between analyses of successive subsections (Figures A and B,
Supplementary file 2), indicate that individual components are not
always persistent throughout the time interval of analysis. Although
this cyclic instability brings into question the assumption of statistical
stationarity (required by definition forMTMspectral analysis) the alter-
native method of STFT analysis only requires the time-series to remain
Table 1a
Summary ofMTManalysis results for Volcán deColima (VdC). Cycles are described by their peri
Noise Model. Cycles in italics are those that are clearly seen in the spectrograms produced by t

VdC 2006–2011 (2038 samples) Before effu

Confidence Level (%) 99 95 99
Explosions 24 90, 58, 45
LALP 333, 250, 71, 32 100, 52, 43, 37, 28, 23 85, 48

Table 1b
Summary of MTM analysis results for Soufrière Hills volcano (SHV). Cycles are described by the
the Red Noise Model. Cycles in italics are those that are clearly seen in the spectrograms produ

SHV 1996–2007 (4087 samples) Phase 1 (5

Confidence level (%) 99 95 99
Hybrid 333 83, 66, 47, 45, 43, 41, 27, 26, 25 78, 21
LP 227, 116 131, 60, 57, 47, 32, 31, 27 205, 21
Volcano-tectonic 144, 95 65, 45, 33, 27, 23 26
stationary within each ‘window’ (described in Section 2.1). We have
therefore applied the STFT approach to explore the temporal variability
of the time-series in more detail; results from each volcanic system are
described below.

3.1.2. Short-term Fourier Transform
Preliminary inspection of the spectrograms from the VdC datasets

(Fig. 5) highlights sub-annual cycles which fluctuate in strength
through the time-series:

• Explosions— For explosion events (Fig. 5A), the daily counts are dom-
inated by a ~100-day cycle almost throughout. During late 2008, there
is a brief period where a 50-day cycle is evident but no correlation is
apparent with the dome-growth patterns highlighted by Hutchison
et al. (2013; see Section 1.2.1). A switch from endogenous to
od (days) and classified based on the level of confidence atwhich this peak exceeds the Red
he STFT analysis (Section 3.1.3).

sion (399) Stage I (332) Stage II (781) Stage III (495)

95 99 95 99 95 99 95
31 24 46 73, 25 102, 25
21 68 32 68, 32, 24 78, 25

ir period (days) and classified based on the level of confidence at which this peak exceeds
ced by the STFT analysis (Section 3.1.3).

05) Phase 2 (1348) Phase 3 (604)

95 99 95 99 95
42, 25 512, 54, 33, 29 36 54, 28, 20
45, 35 227, 158, 48 85, 59, 44, 31, 27, 24, 22 35, 31, 23
171 186, 30, 23 35, 25, 22, 21, 20 22 34, 26
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Fig. 5. Daily event counts (black bars), DFA scaling exponent (α) values (solid red line), and STFT spectrograms (lower half) for (A) explosion seismicity, and (B) LALP seismicity from
Volcán de Colima (VdC). Note the differences in scales of y-axes. The scaling exponent (α) values are plotted at the end of their respective windows of measurement; gaps represent pe-
riodswhere invalid scaling exponents are calculateddue to insufficient seismic events. Spectrograms are plotted from20- to 365-day cycle periods; themaximumdefined by thehigh-pass
Butterworth filter. Regions of high intensity close to or on the maximum period represent intervals in the time-series where very low-frequency cycles or no cycles are measured. The
power spectral density of each window has been normalised to unity.
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exogenous growth in early 2010 (stage III) was followed by a period
where no strong cyclic behaviour could be easily discerned. However,
a brief andweak ~25-day cycle at the beginning of the stage correlates
with the 25-day peak in the PSD of this subsection fromMTManalysis
(Table 1a; Figure A, Supplementary file 2).

• LALP events — For LALP events, the spectrogram (Fig. 5B) appears to
be less ordered with cycles of 50- up to 200-days fluctuating in
strength throughout the entire time-series. In mid-2009 there is a
period where a weak 33-day cycle appears simultaneously with a
decrease in the number of events per day; this correlates with the
32-day peak identified in the MTM analysis over stage II (Table 1a).
On first inspection, the spectrograms of the time-series from SHV
appear to showmore complex temporal variation than those fromVdC:

• Hybrid events — The spectrogram for Hybrid events (Fig. 6A) shows
no strong cycles of seismicity. On closer inspection, however, weak
50- and 100-day cycles can be discerned during Phase 1 of the activity.
Just before the beginning of Phase 2, there is a hint of a brief weak
100-day cycle above the noise. Evidence of a 50-day cycle also appears
in the middle of Phase 2, centred approximately on October 2001.
Hybrid events continue after the end of Phase 2, and here we can
see 50-day cycles briefly manifest although this is at the limit of
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Fig. 6.Daily event counts (black bars), DFA scaling exponent (α) values (solid red line), and STFT spectrograms (lower half) for (A) hybrid, (B) long-period, and (C) volcano-tectonic (VT)
event types from Soufrière Hills volcano (SHV). Note the differences in scales of y-axes for all three event types. The scaling exponent (α) values are plotted at the end of their respective
windows of measurement; gaps represent periods where invalid scaling exponents are calculated due to insufficient seismic events. Spectrograms are plotted from 20- to 365-day cycle
periods; the maximum defined by the high-pass Butterworth filter. Regions of high intensity close to or on the maximum period represent intervals in the time-series where very low-
frequency cycles or no cycles are measured. The power spectral density of each window has been normalised to unity.
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what can bedistinguished from thenoise. In the secondhalf of Phase 3
the 100-day cycle is once again briefly evident at low intensity.

• Long-period events— In contrast to hybrid events, the spectrogram for
long-period events (Fig. 6B) indicates that the seismicity is sporadically
dominated by 100-day cycles during each phase of activity. A 50-day
cycle can also be discerned in the middle of Phase 1 (May/June 1997)
and the beginning of Phase 2 (January/February 2000). A brief
30-day cycle also appears during Phase 2 centred on October 2000.

• Volcano-tectonic events— For volcano-tectonic events (Fig. 6C), cycles
are detected with 100- to ~200-day periods. The time variation of the
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cyclicity from 1996 to 2002 suggests a relation between the level of ac-
tivity at the volcano and the cycle frequency, with the 100-day cycle
appearing during the pause between Phase 1 and 2 but the ~200-day
cycle being stronger in Phase 1 itself. Seismicity from January 2004 to
the end of Phase 3 in early 2007 shows a weak indication of a
200-day cycle.

3.1.3. FFT methodology comparison
By comparing and contrasting the results fromMTM and STFT anal-

ysis, it is possible to evaluate the interpretations of each set of results as
well as gain insights into the strengths andweaknesses of eachmethod.
We note that it is important to remember that MTM analysis produces
one PSD from a time-series, while the spectrograms produced by STFT
analysis represent the combination ofmany smaller PSDs from overlap-
ping sections of the same time-series. Spectral peaks that are seen in the
MTM results are sometimes not seen in the STFT spectrograms and vice
versa.

For the time-series from VdC, the results do generally agree but
there are a few cycles which are not seen by the other method.

• Explosion events— For the explosion events time-series fromVdC, the
~100-day cycle seen in the spectrogram (Fig. 5A) is generally missing
in the MTM results, with the exception of stage III (Table 1a). Smaller
cycles in the subsections of the MTM analysis are seen in the spectro-
grams: the 31-day cycle from before effusion is seen mid-2006; the
25-day cycle in both stages II and III can be seen at the beginning of
each stage, although it is stronger in the latter.

• LALP events— For LALP events, the ~100-day cycle in the spectrogram
(Fig. 5B) is alsomissing in each subsection of theMTManalyses, but is
seen in the PSD from whole time-series analysis (Table 1a). Cycles in
the MTM analysis that can be seen in the spectrogram include the
32- and 24-day cycles in stage II (seen early to mid-2009), and the
78-day cycle in stage III (January 2011). However, there are also cycles
in the MTM analysis that cannot be seen in the spectrogram: the 48-
and 21-day cycles from before effusion, the 68- and 32-day cycle in
stage I, and the 25-day cycle in stage III.

The results from both methods on the time-series from SHV show a
greater degree of complexity than those at VdC.

• Hybrid events — Only five of the cycles seen in the MTM analysis of
subsections of the Hybrid event time-series (Table 1b) can be clearly
discerned in the STFT spectrogram (Fig. 6A). The 42- and 78-day cy-
cles can be seen dominating Phase 1, but the 25-day cycle cannot be
discerned from background noise and the 21-day cycle cannot be
seen at all. In Phase 2, the 33- and 29-day cycles are seen weakly in
late 1999 and the 54-day cycle can be seen in the strong patch centred
on October 2001; the 512-day cycle is beyond the limits imposed by
the high-pass Butterworth filter. None of the peaks highlighted by
MTM analysis in Phase 3 are seen in the spectrogram, and a weak
N100-day cycle in the spectrogram is not present in theMTManalysis
results.

• Long-period events — For long-period events, both methods
highlighted particularly complex temporal patterns such as those
seen in Phase 2 (Fig. 6B; Table 1b). During this phase, only the 44-
and 59-day cycles are clearly seen with a strong patch appearing in
late 1999, and the 158- and 227-day cycles are hard to discern but
could correlate with the patch seen during 2002. The other cycles
identified by MTM analysis during this phase are hard to pick out
from the background ‘honeycomb’ pattern. For Phase 1, only the
205- and 45-day cycles can be picked out, and in Phase 3 none of
the MTM cycles can be clearly discerned.

• Volcano-tectonic events— In contrast to the other time-series, the re-
sults from the volcano-tectonic events suggest it is not as temporally
complex (Fig. 6C; Table 1b). In Phase 1, the 171-day cycle is likely
the strong patch dominating the spectrogram from late 1996 to
mid-1997; the 26-day cycle is difficult to discern from the background
levels. In Phase 2, the 186-day cycle is seen briefly in the strong patch
at the very beginning of the phase in October 1999; the remaining
cycles (20 to 35-day) are likely to be found in the weak patch from
October 2000 to October 2001. TheMTMcycles in Phase 3 are difficult
to see against the background patterns in the spectrogram.

Comparing and contrasting the results fromMTM and STFT analysis
has brought up several key observations. Firstly some cycles seen in the
results from onemethod are not seen in the results from the other. Sec-
ondly, cycles that do appear in both sets of results only appear transient-
ly. Thirdly, if multiple cycles from MTM analysis of a subsection appear
in the equivalent section in the spectrogram, the cycles are often not si-
multaneous (e.g. the 25- and 100-day cycle in stage III of the Explosion
time-series from VdC; Fig. 5A and Table 1a). These observations and
their implications are discussed below in Section 4.1.

3.2. Detrended fluctuation analysis

Like STFT, parameter selection for this methodmust be optimised to
ensure reliable results. Themovingwindow sizemust ensuremaximum
resolution while producing valid scaling exponents. Any trends in the
scaling exponents must be independent of window size and moving
increment and the box sizes must give log-log plots appropriate for
calculating α. Each time-series was initially analysed with DFA to pro-
duce log-log plots to assess the correct parameters needed (Fig. 2).

Log-log plots were calculated with n ranging from 10 to m days,
where m is the size of the dataset rounded down to a multiple of 10
(2040 for VdC, 4080 for SHV). The plots indicate that each time series
is self-similar, displaying persistent behaviour on timescales of
b100 days (Fig. 2); irregularity in log (F (n)) above log (n) ≈ 2 in all
plots suggest disorder at N100 days. This constrains the maximum
box size to 100 days, as values above this would give unreliable
scaling exponents. The log-log plot for LALPs shows a break in slope at
~log (n) = 2.7, suggesting a change in scaling dynamics at N500 days.
This was not observed in the log-log plots for the same seismic event
type in Lachowycz et al. (2013); this is likely due to the longer time-
series used here (we analyse January 2006 to July 2011, whereas
Lachowycz et al. (2013) analyse November 2004 to December 2008).

3.2.1. Volcán de Colima
The scaling exponent for Explosion events remainswithin 0.5 bα b 1

indicating that the time-series is relatively persistent (Fig. 5A). For LALP
events, α fluctuates between 0.7 and 1.3, moving from long-range
power-law correlation to strong non-power-law correlations via ‘pink
noise’ (Section 2.2; Fig. 5B). For both time-series there is no significant
difference in α before and during dome growth. In the Explosion
time-series a weak 1.5–2 year cycle can be seen which cannot be corre-
latedwith variations in volcanic activity. In the LALP time-series there is
a 200- to 350-day cycle which requires further analysis.

3.2.2. Soufrière Hills volcano
The temporal variation of the scaling exponent for all three time-

series at SHV ranges from strongly persistent values (0.5 b α b 1) up
to strong correlations not of a power-law form (α N 1; Fig. 6). The scal-
ing exponent for Hybrid seismicity appears to show little correlation in
relation to changes in activity, with the exception of the significant dip
immediately prior to Phase 2, but a weak annual cycle is observed dur-
ing Phase 2 (Fig. 6A). For LP events, the temporal variation ofα does ap-
pear to show a relation to activity, with higher values (α N 1) during
phases of activity, and a weak annual cycle during Phase 2 (Fig. 6B).
Like the seismicity itself, the temporal variation of the scaling exponent
for volcano-tectonic events shows no correlation with activity at the
volcanic system (Fig. 6C). Instead, α values show a general and gentle
downward trend with annual cycles appearing in the latter half of the
time-series (January 2004 to December 2007).



116 O.D. Lamb et al. / Journal of Volcanology and Geothermal Research 284 (2014) 106–121
3.3. Probabilistic distribution analysis

At Volcán de Colima both Impulsive and Emergent events show a
peak in the P-value (the measure of goodness-of-fit) for the Weibull
curve during Stage I and the start of Stage III (Fig. 7A, B). Outside of
these time-periods, neither probabilistic model produces significant
P-values. For LALP events there are correlations between activity at
VdC and the pattern of the P-values (Fig. 7C). In early 2006 we see a
strong fit to Weibull models, superseded by a stronger log-logistic
curve in the first half of 2007. As the dome growth continues from
2007 tomid-2011, the P-value for theWeibull curve increases gradually
up to high values of N0.9. This suggests a transition from one dominant
process to another and the log-logistic period represents the overlap
between these processes; this is discussed further in Section 4.3.
Fig. 7. P-values over time forWeibull (solid blue line) and log-logistic (solid red line) fits to even
(C) LALP seismicity recorded at Volcán de Colima (VdC). P-values are recorded on the date of th
event counts.
4. Discussion

4.1. Common seismic cyclicity

MTM analysis of the complete time-series revealed complex seis-
micity patterns at both SHV and VdC, providing evidence for multiple
superimposed cycles during phases of activity (Fig. 4). The broad nature
of many of the spectral peaks suggested temporal variability of the cy-
cles which was subsequently confirmed from MTM analysis of subsec-
tions of each time-series (Tables 1a, 1b; Figure A, B in Supplementary
file 2). This is similar to the results shown by Nicholson et al. (2013)
from MTM analysis of an SO2 flux times-series from SHV. STFT analysis
was then used to investigate further the temporal variability of the cy-
cles in each time-series. By comparing and contrasting the STFT results
t repose intervals and daily event counts (black bars) for (A) impulsive, (B) emergent, and
e youngest repose interval used in their respective bins. Note the different y-axes scales for
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from VdC and SHV it is clear that there are similarities in the long-term
behaviour of seismicity at each volcanic system (Figs. 5, 6). One com-
mon feature is a range of cycleswith ~50-, ~100-, and ~200-dayperiods.
This range may seem harmonic with a fundamental frequency with a
period of 50-days, but this cannot be the case as the different cycles
rarely, if at all, appear simultaneously. This is seen most clearly in the
explosions from VdC (Fig. 5A) where 50-day and 100-day cycles do
not appear simultaneously in stage II. Over time, the cycles fluctuate
in strength and are only weakly, if at all, correlated to variations in
lava dome growth. Cycleswith similar periods are seen at both systems,
despite the variations in extrusion rate. VdC had much slower rates
(b1 m3 s−1; Mueller et al., 2013) than at SHV (2–5.6 m3 s−1 Ryan
et al., 2010; Wadge et al., 2010). In Voight et al (1998) the onset of
‘50-day’ cycles in tiltmeter data at SHV were indicated by sudden in-
creases in seismicity or surface activity; this characteristic is not shared
by the sub-annual cycles at VdC.

The similarity of the cycles at SHV found here and in previous work
using othermonitoring parameters (Voight et al., 1998; Nicholson et al.,
2013; Odbert et al., 2014) gives confidence in the results. In Odbert et al.
(2014), 50-day cycles appear to bemuchmore prevalent in the seismic-
ity than those described in this work and no 100-day cycle is detected in
their analysis. The incomplete agreement of resultsmay be due to either
a difference in the time-series used (Odbert et al., 2014, analyse total
seismic events over the same time-period rather than time-series for
each event type), or a methodological difference (Odbert et al., 2014,
use Continuous Wavelet Transform) which means that the suitability
of each statistical method will need to be more thoroughly assessed in
order to understand which is more reliable and the reasons for the
differences. Comparing and contrasting the results from both MTM
and STFT analysis brought out several key observations (Section 3.1.3).
The observation that cycles seen in MTM analysis appear only briefly
in the spectrograms produced by STFT, and that the same cycles are
often not simultaneous, demonstrates the justification of using the
STFTmethod on the dataset.Without the results from the STFT analysis,
the results from theMTManalysiswould have beenmisinterpreted. The
remaining observation, that several cycles seen in the MTM analysis
have not appeared in the STFT results (and vice versa) cannot be easily
explained; it may be that they are methodological artefacts. These
observations emphasise the need to explore time-series data using
multiple approaches, producing more robust evidence on which to
draw conclusions regarding any patterns that may be present.

Before trying to understand the nature of these cycles, we need to
consider first the source mechanisms behind each type of seismicity.
At VdC, explosions have been shown to be the result of rapidly
decompressing magma at a shallow depth (Petrosino et al., 2011;
Lavallée et al., 2012). LALP seismicity has been linked to the brittle fail-
ure of magma as it passes through the glass transition due to shearing
along the conduit walls (Varley et al., 2010a,b). It has also been sug-
gested that LALP events are generated by the movement of volcanic
fluids through the volcanic system (Petrosino et al., 2011). At SHV,
hybrid and LP seismicity have been suggested to have a similar source
mechanism as LALP seismicity at VdC, with brittle failure of magma
passing through the glass transition acting as a trigger and resonance
producing the low-frequency coda (Neuberg et al., 2006). Volcano-
tectonic seismicity is thought to be the expression of brittle failure of
rock due to stresses induced by the movement of magma (McNutt,
2005). A common link between all volcano-seismic event types
analysed here is the movement of magma and volcanic gas within the
volcanic system. Explosions require magma to move to shallow depth
before rapidly decompressing and producing gas- and ash-filled clouds
at the surface. LALP, long-period and hybrid seismicity require ascend-
ing magma for brittle failure or the resonance of volcanic gas within
cracks in the system. Volcano-tectonic seismicity is the exception in
that it requires stress induced by magma movement with no influence
from volcanic gas. This implies that the cycles seen in volcano-
seismicity at both VdC and SHV are linked to cyclic motion of magma
and volcanic gas/fluid within each volcanic plumbing system; this is
discussed further in Section 4.4.

4.2. Long-term cycles in persistence

In common with the results of the STFT analysis, there are clear
similarities in the time-evolution of correlation within the seismic
time-series at each volcanic system (Figs. 5, 6). With the exception of
volcano-tectonic events at SHV, the results show a weak positive rela-
tionship between the scaling exponent and seismic event rates; this is
clearer at SHV (Fig. 6) where periods of reduced levels of seismicity
are correlated with relatively low scaling exponents. The different
parameters used for analysis here mean that short-term trends at VdC
described by Lachowycz et al. (2013) could not be seen. We use a
50-day moving increment rather than 1-day to avoid the parameter ar-
tefact discussed in Section 2.2. However, comparison of our results with
that of Lachowycz et al. (2013) suggests that similar long-term trends
have been identified.

With the exception of explosion events at VdC (Fig. 5A), the time-
series show an approximately annual cycle in one part of their correla-
tion time-series (Figs. 5, 6). These cycles are not clearly seen in the raw
data, emphasising that these are annual cycles in the ‘roughness’ of the
time-series, not the activity itself. Observations from Mt St Helens
(Mastin, 1994) and SHV (Matthews et al., 2002, 2009), and thermody-
namic modelling (Hicks et al., 2010) have shown that rainfall can
modulate the processes within active volcanic systems and Lachowycz
et al. (2013) cited the same effect to explain similar cycles seen in
their analysis of seismicity at VdC and SHV. However, the cycles seen
in the time-series here do not correlate with the wet seasons at VdC
(June to October; Fig. 8) or SHV (July to December; Fig. 9), and the inter-
pretation requires further investigation. Alvarez-Ramirez et al. (2009)
cited quasi-periodic dynamics related to volcano-tectonic events as
possibly producing the cycles observed in the scaling exponent of explo-
sions from Popocatépetl volcano (Mexico). While this could apply to
SHV, it cannot apply to VdC since volcano-tectonic events have been
rare since the beginning of the current eruption (Varley et al., 2010b).
The 1.5–2 year cycle described here for VdC explosions (Fig. 5A) con-
trasts with a shorter annual cycle described by Lachowycz et al.
(2013). It may be that combining the Impulsive and Emergent event
counts has altered the cycle but it is not clear why this should be the
case, considering the similarity in the mechanism of the events
(Table A, supplementary file 1). Cycles on a similar timescale have
been described at SHV for lava extrusion (Odbert et al., 2014). However,
it must be emphasised that the SHV cycles were seen in the time-series
data whereas the cycles described here are in terms of long-term corre-
lationwithin the time-series; thus they are less likely to be produced by
a similar process.

There is little correlation between the values of α and the results of
the STFT analysis. This suggests that the processes at sub-annual time-
scales and at annual timescales have no significant effect on each
other. However, STFT has been carried out at a finer resolution than
DFA due to the parameter artefact effect in the latter and this has likely
affected the results somewhat; therefore the comparison of these
analyses is somewhat speculative.

4.3. Variations in repose intervals

Variations in strength (i.e. P-value) of Weibull and log-logistic
models (Fig. 7) suggest changes in processes occurringwithin the volca-
nic system. The log-logistic model describes a system with at least two
competing processes affecting the measured signals, whereas the
Weibull model describes a system where simple failure is dominating
the signal (Watt et al., 2007).

The transition from Weibull to log-logistic model behaviour and
back (Fig. 7C) can be explained in the context of a transition in the
source mechanisms for the seismicity (see Section 4.1 for discussion of



Fig. 8. Daily event counts (black bars) and the DFA scaling exponent values (α; solid red line) from Volcán de Colima (VdC) plotted with the wet seasons during the period of analysis
shown (blue areas). The scaling exponent (α) values are plotted at the end of their respective windows of measurement; gaps represent periods where invalid scaling exponents are cal-
culated due to insufficient seismic events.

Fig. 9.Daily event counts (black bars) and theDFA scaling exponent values (α; solid red line) from Soufrière Hills volcano (SHV) plottedwith thewet seasons during the period of analysis
shown (blue areas). The scaling exponent (α) values are plotted at the end of their respective windows of measurement; gaps represent periods where invalid scaling exponents are cal-
culated due to insufficient seismic events.
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Table 2
Comparison of known facts at each volcanic system.

Volcán de Colimaa Soufrière Hills volcanob

Bulk composition Andesite Andesite
Latest activity 1997–2011; Jan. 2013–ongoing. 1995–ongoing
No. of dome building phases 5 5
Example Dome size (m3) 1.5–2 × 106 (2007–2011) 203 × 106 (non-dense rock equivalent, 2007)
Storage depth 1 (km) 2.3–6.6 5.5–7.5
Storage depth 2 (km) 12.7–23.5
Storage temperature (°C) 940–1060 820–880
Conduit radius (m) 15 ± 10
Effusion rate (m3 s−1) N5 (1998–1999, 2004), b1 (2001–2003, 2007–2011) 4.3 (Phase 1), ~2 (Phase 2), 5.6 ± 0.9 (Phase 3)
Pre-eruptive H2O (wt. %) ≤4.1 4.27 ± 0.5
log fO2 −10.5 to −12.2 −11.2 to −11.7
Cycle Timescales

Activity ~100 years in Plinian or sub-Plinian eruptions. ~30 year seismic crisis cycle
Dome growth 2–3 years
Seismicity 50-, 100-, 200-days 3–30 h, 11–16 days, 6–8 weeks, 100-, 200-days.
SO2 6–8 weeks
Deformation 3–30 h, 6–8 weeks, 2–3 years
Explosions 1–4 h 8–12 h

a Luhr and Carmichael (1980), Luhr (2002), Hutchison et al. (2013), Mueller et al. (2013), Reubi et al. (2013) and this study.
b Barclay et al. (1998), Devine et al. (1998), Young et al. (1998), Murphy et al. (2000), Lensky et al. (2008), Ridolfi et al. (2010), Ryan et al. (2010), Paulatto et al. (2012), Nicholson et al.

(2013) and Odbert et al. (2014).
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mechanisms). Most of 2006 is dominated by the Weibull model,
implying the LALP recordwas dominated by a single brittle failuremech-
anism. Slowmagma ascent likely only occurred towards the end of 2006
prior to the onset of dome growth in January 2007. This suggests that the
LALP time-series in 2006 is not dominated by brittle failure of magma,
but instead the resonance of volcanic fluids by brittle failure of cracks.
Immediately prior to the first observation of a dome in February 2007,
the log-logisticmodel becomesmore significant suggesting two compet-
ing mechanisms. At this time, magma had begun ascending through the
volcanic system and LALP seismicity was then produced by both brittle
failure of magma and as well as resonance of fluids. The fact that the
peak for the log-logistic model occurs after the first few weeks of dome
growth suggests that ascending magma was still degassing enough to
produce LALP seismicity from resonance of volatiles, ash suspension, or
magma melt. The dominance of the Weibull model for most of the
2007–2011 dome growth activity is an indication that the brittle failure
mechanism is more prevalent. One way of testing this idea would be to
carry out further examination of the families of seismic events, looking
for any subtle changes in waveform characteristics during the onset of
dome growth. Previously this approach has observed and described the
presence of swarms of long-period seismicity associatedwith explosions
occurring at VdC (Varley et al., 2010b; Arámbula-Mendoza et al., 2011).
At the end of activity in July 2011, theWeibull model continues to dom-
inate (Fig. 7C) even as activity decreases and ceases.

It is unsurprising that the results for emergent and impulsive events
are similar (Fig. 7A, B) since the difference between the generation
mechanisms is likely to be minimal (see supplementary file 1). Each
event is the expression of sudden and violent release of gas via fractured
pathways to the surface (Varley et al., 2010a); the difference being that
Emergent events represent a more gradual release of gas, whereas Im-
pulsive events involve a single large fracture dominating the signal.
The higher Weibull fit parameter during stages I and III (Fig. 7A,
B) suggest that Emergent and Impulsive event repose intervals may be
affected by the balance between exogenous and endogenous dome
growth, with the exogenous growth and lava lobe effusion promoting
Weibull behaviour. This suggests that the change in lava dome growth
mechanism slightly affects the generation mechanism for explosions.
There are periods when neither probabilistic model fits produce signif-
icant P-values; e.g. January 2008 to July 2009. The reasons for these pe-
riods are unclear, and have no correlation with the results from other
methods (Fig. 5A); these periods need to be investigated further.
4.4. Common behaviour at two separate systems

The most important observation to come out of the analysis of
seismicity from the two volcanic systems is the broadly common cyclical
pattern of behaviour in each system: the ~50-, ~100- and ~200-day cy-
cles in event counts (Section 3.1, Figs. 5, 6). The periods of the cycles de-
scribed here are broadly consistent with those described in deformation
(Voight et al., 1999) and SO2 flux timeseries (Nicholson et al., 2013) at
SHVwhich suggests that a commonprocess, or a set of commonprocess-
es, influences the temporal variations of all three datasets. We suggest
that the sub-annual cycles (~200 days) may result from cyclic move-
ment of magma within each system (Section 4.1); the challenge now is
to model the cause. At SHV, periodic expansion and contraction of an
elastic-walled dyke, which acts as a volumetric capacitor tomagma stor-
age in the lower conduit has previously been proposed as a mechanism
for the 6–8 week (~50-day) cycles (Costa et al., 2007a,b, 2013). The
model identifies several key factors that can affect the length of cycles,
including magma chamber depth, magma chamber size, dyke width, in-
flux rate from chamber to dyke, and magma rheology. By varying the
values of any number of these factors, cycles of ~100 or ~200-days can
also be modelled; for example a dyke with width of 60–90 m could pro-
duce a 200-day cycle (See Fig. 6B of Costa et al., 2007a). Here, we show
that similar cycles are seen in seismicity at VdC, opening speculation
that a similar model could potentially be applied to this volcanic system.
However, any attempts to model the conduit processes operating at
these dome-forming volcanoes must be able to account for the observed
cyclic behaviour in seismicity, deformation and SO2 flux while reconcil-
ing the differences and similarities between the two systems (Table 2).
The recognition of these parallels in behaviour suggests that it would
be worthwhile extending this approach to time-series data from other
long-lived dome-forming eruptions. It also suggests the potential of
using these techniques as a basis for the development of automated
near-real time monitoring tools. These tools would be designed to auto-
matically detect changes in patterns of behaviour that may lead to
changes in hazard potential of a volcanic system.
5. Conclusions

We have successfully applied a suite of analytical tools to daily seis-
mic count datasets from Volcán de Colima (VdC) and Soufrière Hills
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volcano (SHV), providing insights into long-termbehaviourwithin each
system. Fast Fourier Transform analysis (Multitaper Method and Short-
Term Fourier Transform) revealed temporally variable ~50-, ~100-, and
~200-day cycles that may be linked to variations in magma movement
in the volcanic plumbing system. Detrended Fluctuation Analysis
showed correlations between the number of seismic events and the
long-range power-law correlation (i.e. persistence) of seismicity at
each volcanic system;with no clearmechanism to explain it. Probabilis-
tic Distribution Analysis was successfully adapted to track changes in
the physical processes affecting the seismicity at VdC. Variations in the
strength ofWeibull or log-logisticmodels are attributed to either a tran-
sition in source mechanisms or changes in growth mode of the lava
dome.

Cyclical patterns of behaviour are well documented at SHV (e.g.
Voight et al., 1998; Odbert and Wadge, 2009; Nicholson et al., 2013)
and their recognition has stimulated the development of physical
models of the volcanic system (e.g. Costa et al., 2007a,b, 2012; Thomas
and Neuberg, 2012). These physical models in turn, have the potential
to inform future assessments of hazards as the nature of the eruption
changes through time. Our analysis has revealed some broad-scale sim-
ilarities in behaviour between SHV and VdC. These results imply that
there is potential for the development of a general physical model of
the sub-surface processes that are responsible for the cyclical patterns
of behaviour at dome-forming volcanoes. The recognition of some com-
mon behavioural patterns between time-series of geophysical monitor-
ing data also demonstrates the potential for the development of tools
for automated near-real time monitoring, and for their application to
hazard detection at multiple volcanic systems.
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